
LESSON 25 - STUDY GUIDE

Abstract. This is the second of two lessons focused on the machinery required to prove pointwise
almost everywhere convergence of approximate identities. For this lesson we will see the definition

of a maximal operator of a family of linear operators and the importance of establishing weak type

inequalities for it in order to prove pointwise almost everywhere convergence. We will then present and
study the Hardy-Littlewood maximal operator as the first and fundamental such operator, but also as

a universal majorant for a large class of maximal operators of approximate identities.

1. Maximal operators, the Hardy-Littlewood maximal function and pointwise almost
everywhere convergence of approximate identities.

Study material: Just like in the previous lesson, this lesson continues to be a personal summary and
selection of the material on maximal operators and the Hardy-Littlewood maximal function found in
Javier Duoandikoetxea’s book [1] in chapter 2 The Hardy-Littlewood Maximal Function, Grafakos’
[3] section 2.1 Maximal Functions and Folland’s [2] section 3.4 Differentiation on Euclidean Space.

For the particular subject of maximal operators and the Hardy-Littlewood maximal function I cannot
help strongly recommending Elias Stein’s masterpiece [5] that begins exactly with this subject.

After having presented the fundamental definitions and results concerning weak type spaces and in-
equalities, in the previous lesson, we now can now develop the main tool used to prove pointwise con-
vergence almost everywhere of sequences or families of measurable functions and operators: the maximal
operator.

Definition 1.1. Let {Tt} be a family of operators Tt : Lp(X,µ) → Lp(X,µ). The maximal operator,
associated with this family, denoted by T ∗, is defined as

T ∗f(x) = sup
t
|Ttf(x)|.

The following is the central result that relates all these concepts.

Theorem 1.2. Let T ∗ be the maximal operator associated with a family of linear operators {Tt} defined
on LP (X,µ). If, for every f ∈ Lp(X,µ), the maximal function T ∗f is measurable1 and T ∗ is of weak
type (p, q) for some 1 ≤ p, q <∞ then the set

F = {f ∈ Lp(X,µ) : lim
t→t0

Ttf(x) = f(x) µ-almost everywhere x ∈ X}

is closed in Lp(X,µ).

Proof. Let f ∈ Lp(X,µ) be in the closure of F , f ∈ F . We will show that

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > 0}

)
= 0,

Date: May 25, 2020.
1Of course, if the family of operators is a sequence, then the maximal function is always measurable. There might be

issues, though, if the family of operators is uncountable and for those cases measurability of the maximal function must be

separately verified for each case.
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thus concluding that limt→t0 Ttf(x) = f(x) for µ-almost every x ∈ X and therefore that f ∈ F . As
f ∈ F we can pick a sequence fn ∈ F such that fn → f in the Lp(X,µ) norm (of course, if F is empty
the conclusion of the theorem is trivial). Then

|Ttf(x)− f(x)| ≤ |Ttf(x)− Ttfn(x)|+ |Ttfn(x)− fn(x)|+ |fn(x)− f(x)|
= |Tt(f − fn)(x)|+ |Ttfn(x)− fn(x)|+ |fn(x)− f(x)|

so that

lim sup
t→t0

|Ttf(x)− f(x)| ≤ lim sup
t→t0

|Tt(f − fn)(x)|+ lim sup
t→t0

|Ttfn(x)− fn(x)|+ |fn(x)− f(x)|

≤ |T ∗(f − fn)(x)|+ lim sup
t→t0

|Ttfn(x)− fn(x)|+ |fn(x)− f(x)|

and thus

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > ε}

)
≤ µ

(
{x ∈ X : |T ∗(f − fn)(x)| > ε/3}

)
+

+ µ
(
{x ∈ X : lim sup

t→t0
|Ttfn(x)− fn(x)| > ε/3}

)
+ µ

(
{x ∈ X : |fn(x)− f(x)| > ε/3}

)
= µ

(
{x ∈ X : |T ∗(f − fn)(x)| > ε/3}

)
+ µ

(
{x ∈ X : |fn(x)− f(x)| > ε/3}

)
,

where we use the fact that the middle term is zero, because for the fn ∈ F the pointwise convergence
holds except for a set of zero measure. Finally, using the weak type bounds for the maximal operator
and for Lp ⊂ Lpw functions (the Chebyshev inequality), we obtain

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > ε}

)
≤ µ

(
{x ∈ X : |T ∗(f − fn)(x)| > ε/3}

)
+ µ

(
{x ∈ X : |fn(x)− f(x)| > ε/3}

)
≤
(
C

3‖fn − f‖Lp(X,µ)
ε

)q
+

(
3‖fn − f‖Lp(X,µ)

ε

)p
,

and because ‖fn − f‖Lp(X,µ) → 0 we conclude that, for every ε > 0,

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > ε}

)
= 0.

Therefore, as

{x ∈ X : lim sup
t→t0

|Ttf(x)− f(x)| > 0} = ∪∞k=1{x ∈ X : lim sup
t→t0

|Ttf(x)− f(x)| > 1/k},

we conclude

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > 0}

)
≤
∞∑
k=1

µ
(
{x ∈ X : lim sup

t→t0
|Ttf(x)− f(x)| > 1/k}

)
= 0.

�

A simple variation of the previous proof also yields the following.

Corollary 1.3. With the same conditions as the previous theorem, the set

F = {f ∈ Lp(X,µ) : lim
t→t0

Ttf(x) exists µ-almost everywhere x ∈ X}

is closed in Lp(X,µ).
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Proof. One just repeats the exact same proof as before, but proving instead that

µ
(
{x ∈ X : lim sup

t→t0
Ttf(x)− lim inf

t→t0
Ttf(x) > 0}

)
= 0,

if Ttf is real valued. If it is complex valued, one just separates into its real and imaginary parts. �

Now, this theorem clearly shows what a powerful tool the concept of maximal operator is in order
to prove pointwise almost everywhere convergence of sequences, or families, of linear operators in Lp

spaces. Very often, one already knows that pointwise convergence holds everywhere for some dense set
of functions, typically C∞c . Then, one “just” needs to establish a weak type estimate for the maximal
operator in order to conclude that pointwise convergence holds almost everywhere for all functions in Lp

because it is the closure of the dense subset.
Here is an example. We already know that Fourier series converge at every point t ∈ T for f ∈ C∞(T).

And C∞(T) is dense in L2(T). So, to prove pointwise convergence almost everywhere of Fourier series in
L2(T) what Carleson actually proved in his famous result of 1965 was that the maximal operator of the
partial sums

S∗f(t) = sup
N≥1

∣∣∣∣∣
N∑

n=−N
f̂(n)eint

∣∣∣∣∣ ,
today called the Carleson maximal operator and usually denoted by Cf , is weak type (2, 2).

The first, and arguably the most important maximal operator is the Hardy-Littlewood maximal oper-
ator. It was introduced in 1930 in a paper [4] written jointly by the two famous British mathematicians,
titled “A Maximal Theorem With Function-Theoretic Applications”, in order to try to relate Lp norms
of the supremum at fixed argument over all radii 0 ≤ r ≤ 1 of analytic functions on the unit disk D,
with the Lp norms of its boundary values at r = 1. They start their motivation of the definition of the
maximal function with a famous sentence:

“The problem is most easily grasped when stated in the language of cricket, or any other
game in which a player compiles a series of scores of which an average is recorded.”

Basically, the Hardy-Littlewood maximal function of a locally integrable function2 f ∈ L1
loc(Rn) is the

supremum of the averages of the absolute value of f over balls centered at a point.

Definition 1.4. Let f ∈ L1
loc(Rn). Then, the (centered) Hardy-Littlewood maximal function of f , denoted

by Mf , is defined as

(1.1) Mf(x) = sup
r>0

1

|Br(x)|

�
Br(x)

|f(y)|dy,

where Br(x) is the Euclidean ball of radius r centered at x and |Br(x)| its Lebesgue measure, and this
definition includes the possibility that Mf(x) = +∞.

Many other variants of the Hardy-Littlewood maximal operator exist: with cubes instead of balls,
taking the supremum over all balls that contain x and not just the ones centered at x, etc. But they are
all comparable and we will restrict our definition to the case (1.1) above.

If one considers averages of Lebesgue integrable function over balls centered at x

(1.2) Arf(x) =
1

|Br(x)|

�
Br(x)

f(y)dy,

2Recall that a locally integrable function f ∈ L1
loc(Rn) is a measurable function f : Rn → C such that f ∈ L1(K) for

every compact K ⊂ Rn. Due to the Lp space inclusions for sets of finite measure, it is obvious that, for all 1 ≤ p ≤ ∞,

Lp(Rn) ⊂ L1
loc(Rn).
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and looks at possible pointwise convergence almost everywhere of these averages as r → 0 then, from
Theorem 1.2, we are led to the maximal operator for the averages

(1.3) A∗f(x) = sup
r>0

∣∣∣∣∣ 1

|Br(x)|

�
Br(x)

f(y)dy

∣∣∣∣∣ .
So the Hardy-Littlewood maximal function clearly is related to pointwise almost everywhere convergence
of averages of Lebesgue integrable function over balls centered at x as the radius r shrinks to zero. What
is required, therefore, are weak type estimates for it. But that is the content of the following fundamental
theorem of this theory.

Theorem 1.5. Let f ∈ L1
loc(Rn). Then, the Hardy-Littlewood maximal function Mf is measurable and

(1) M is weak type (1, 1), i.e. if f ∈ L1(Rn) then∣∣{x ∈ X : Mf(x) > α}
∣∣ ≤ Cn

α

�
Rn
|f(x)|dx,

where the constant Cn depends only on the dimension.
(2) For 1 < p ≤ ∞, M is strong type (p, p), i.e. if f ∈ Lp(Rn), then ‖Mf‖Lp(Rn) ≤ Cn,p‖f‖Lp(Rn),

where the constant Cn,p depends only on the dimension and p.

Proof. It is a simple exercise to show that, for f ∈ L1
loc(Rn), the Hardy-Littlewood maximal function Mf

is lower semicontinuous so that, for every α ∈ R the set {x ∈ X : Mf(x) > α} is open and, therefore, it
is measurable.

(1) If f ∈ L1(Rn) let us denote by Eα the set {x ∈ X : Mf(x) > α} and let x ∈ Eα so that
Mf(x) > α. Then, there exists a ball Br(x) centered at x for which

α <
1

|Br(x)|

�
Br(x)

|f(y)|dy ⇒ |Br(x)| < 1

α

�
Br(x)

|f(y)|dy,

which already looks like a weak type estimate for the ball. The set Eα = {x ∈ X : Mf(x) > α}
is then covered by such balls, centered at each of its points. So, if we could extract a countable
subcover ∪xj∈EαBrxj (xj) ⊃ Eα, then

∣∣{x ∈ X : Mf(x) > α}
∣∣ ≤ ∞∑

j=1

|Brxj (xj)| <
1

α

∞∑
j=1

�
Brxj

(xj)

|f(y)|dy,

which is almost what we want, except that the balls overlap each other and therefore the sum
of the integrals on the right hand side would not be comparable to

�
Rn |f(y)|dy. What we

need is a wiser way to extract from the original cover by balls, not a subcover, but a disjoint
collection of balls - so that they do not overlap and thus the sum of integrals can be bounded by�
Rn |f(y)|dy - but whose measures can be compared to the measures of larger balls that would

actually cover the whole of Eα. So we appeal to a Vitali-type covering lemma, important in its
own right, that we will present after the proof of the current theorem. There are a few variants
of this type of covering lemma that can be used, but we are going to apply the formulation in
which, for every c <

∣∣{x ∈ X : Mf(x) > α}
∣∣ we can pick a finite disjoint subcollection of the

balls, let us denote them by B1, . . . , Bk such that 3n
∑j
j=1 |Bj | > c. Therefore, for every such

c <
∣∣{x ∈ X : Mf(x) > α}

∣∣ we have

c < 3n
j∑
j=1

|Bj | <
3n

α

j∑
j=1

�
Bj

|f(y)|dy ≤ 3n

α

�
Rn
|f(y)|dy.
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The right hand side of this inequality is independent of the finite collection of balls chosen for
each c, and as c can be made as close as desired to

∣∣{x ∈ X : Mf(x) > α}
∣∣ we conclude that∣∣{x ∈ X : Mf(x) > α}

∣∣ ≤ 3n

α

�
Rn
|f(y)|dy.

(2) From part (1), for p = 1, and the obvious inequality ‖Mf‖L∞(Rn) ≤ ‖f‖L∞(Rn), for p = ∞, we
have that the Hardy-Littlewood maximal operator is weak type (1, 1) and (∞,∞). So we can
use the Marcinkiewicz interpolation theorem - the Hardy-Littlewood maximal operator is clearly
sublinear - to conclude that it is strong type (p, p) for all 1 < p <∞.

�

Let us now prove the Vitali-type covering lemma.

Lemma 1.6. Let Ω ⊂ Rn be a Lebesgue measurable set covered by a collection of balls. Then, for any
c < |Ω| a finite subcollection B1, . . . , Bk of these balls can be chosen so that

c < 3n
k∑
j=1

|Bj |.

Proof. Let us assume that the measure of Ω is positive and that 0 < c < |Ω|, otherwise the result is totally
obvious. As the Lebesgue measure is regular, we can choose a compact K ⊂ Ω such that c < |K| ≤ Ω
and, for that compact, pick a finite subcover of the balls, say A1, . . . , Am such that K ⊂ ∪mj=1Aj .

Now, chose B1 to be the ball, among the {Aj}, with the largest radius. If there are more than one
with the maximum radius, just pick any one of them. Then, all the remaining balls Aj will have radii
which are not bigger than B1’s. And any one of these balls that intersects B1 will be contained in a ball
with the same center as B1 but with three times the radius. Therefore 3n|B1| is the measure of that ball
with radius three times as big as B1’s that contains B1 and all the remaining Aj that intersect it.

Now, keep B1 and discard all the Aj that intersect it. Those are covered by 3n|B1|. For the remaining
Aj that do not intersect B1 choose the one with the largest radius, and call it B2. Again, a ball with the
same center and three times its radius will cover B2 and all the remaining Aj that intersect it because
they have smaller or equal radii.

We can repeat this process for a finite number of steps, until we get to the end with a finite subcollection
of balls with decreasing radii B1, B2, . . . , Bk such that all the previous Aj intersect one of them, and
therefore

c < |K| ≤ 3n
k∑
j=1

|Bj |.

�

Some observations are in order. The first one is that, from Theorem 1.5 we conclude that, for f ∈
Lp(Rn), 1 ≤ p ≤ ∞, its Hardy-Littlewood maximal function Mf is finite almost everywhere.

A second observation is that, for f ∈ L1(Rn) we can do no better than the weak type (1, 1) estimate
of part (1) of the theorem. In fact, except for f = 0, Mf 6∈ L1(Rn) when f ∈ L1(R), a simple fact which
we will leave as an exercise to be proved.

So, it is now clear that we have all the ingredients to prove a generalized version of the Fundamental
Theorem of Calculus, for Rn, where one shows that the averages of Lebesgue integrable functions over
balls (1.2) converge pointwise almost everywhere to the functions, when the balls shrink to zero radius.
The maximal operator for the averages (1.3) obviously satisfies A∗f(x) ≤Mf(x) and Theorem 1.5 yields
the required weak type estimates. We therefore have the important following result as a consequence of
our study of the Hardy-Littlewood maximal function.
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Theorem 1.7. (Lebesgue Differentiation Theorem) Let f ∈ L1
loc(Rn). Then, for almost every

x ∈ Rn,

(1.4) lim
r→0

1

|Br(x)|

�
Br(x)

f(y) dy = f(x).

Proof. We just need to prove that the theorem holds for functions in L1(Rn) because, given f ∈ L1
loc,

then one just cuts off f at arbitrarily large radii, say f̃ = fχ{|x|≤N+1} to be in L1(Rn), and the limit

r → 0 of the averages does not distinguish between f or f̃ when r < 1 for the points |x| ≤ N . Of course
the balls centered at the origin with radius N form a countable collection whose union is Rn so if this
theorem holds almost everywhere for every cutoff fχ{|x|≤N+1} when |x| ≤ N , then it also holds almost
everywhere for f on Rn.

Part (1) of Theorem 1.5 yields the weak type (1, 1) estimate for the Hardy-Littlewood maximal oper-
ator, and the inequality A∗f(x) ≤ Mf(x) implies that it holds for the averages maximal operator too.
Finally one just needs to recall that, obviously, (1.4) is true for every x ∈ Rn if f ∈ C∞c (Rn), for example,
which is dense in L1(Rn). And from Theorem 1.2 we obtain the pointwise almost everywhere convergence
of the averages for any function in L1(Rn). �

We can rewrite (1.4) as

(1.5) lim
r→0

1

|Br(x)|

�
Br(x)

(
f(y)− f(x)

)
dy = 0.

but, actually, a stronger result is true, with absolute values inside the integral.

Definition 1.8. Let f ∈ L1
loc(Rn). Then, a point x ∈ Rn is called a Lebesgue point of f if

(1.6) lim
r→0

1

|Br(x)|

�
Br(x)

∣∣f(y)− f(x)
∣∣ dy = 0.

The set of Lebesgue points of f is called the Lebesgue set of f .

Clearly (1.6) is stronger than (1.5) so that whenever x is a Lebesgue point of f , we have (1.4). The
interesting fact is that almost every point in Rn is a Lebesgue point so the stronger (1.6) actually holds
almost everywhere as well.

Proposition 1.9. Let f ∈ L1
loc(Rn). Then, the set of points x ∈ Rn which are not Lebesgue points of f

has measure zero.

Proof. Let c ∈ C be an arbitrary constant. Then, applying Theorem 1.7 to the function |f(x) − c| we
conclude that, except for x in a set Ec ⊂ Rn of measure zero, we have

lim
r→0

1

|Br(x)|

�
Br(x)

|f(y)− c| dy = |f(x)− c|.

Taking now a countable dense set of points D ∈ C we conclude that E = ∪c∈DEc also has zero measure.
So if x 6∈ E, for arbitrary ε > 0 there exists c ∈ D such that |f(x)− c| < ε and

lim sup
r→0

1

|Br(x)|

�
Br(x)

|f(y)− f(x)| dy ≤ lim
r→0

1

|Br(x)|

�
Br(x)

|f(y)− c| dy + |c− f(x)| = 2|f(x)− c| ≤ 2ε.

And as ε is arbitrarily small, this shows that for all x 6∈ E

lim
r→0

1

|Br(x)|

�
Br(x)

|f(y)− f(x)| dy = 0,

concluding the proof. �
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Finally, the Hardy-Littlewood is not only important because it leads to the proof of the fundamental
Lebesgue differentiation theorem about almost everywhere pointwise convergence of averages of L1

loc(Rn)
functions, but because it also serves as quite a universal majorant for a very general collection of approx-
imate identities. To motivate it, notice that we can rewrite the averages over balls (1.2) as

Arf(x) = sup
r>0

1

|Br(0)|

�
Br(0)

f(x− y)dy,

which can therefore be interpreted as convolution operators Φr ∗ f where

Φr(x) =
1

|Br(0)|
χBr(0)(x),

and these are rescaled versions of Φ1(x), which is a nonnegative function with
�

Φ1 = 1. So the averages
really are a classical example of approximate identity obtained by rescaling, as seen in Lesson 11,

Arf(x) = Φr ∗ f(x) =
1

rn
Φ1

( ·
r

)
∗ f(x) as r → 0.

The same way that the Hardy-Littlewood maximal operator is a majorant for the maximal operator of
the approximate identity of the averages over balls, the following result shows that it is also the majorant
of maximal operators for a large family of other approximate identities obtained by rescaling.

Theorem 1.10. Let Φ be a nonnegative, radial, decreasing (in radius) and integrable function. Then

sup
t>0

∣∣∣∣ 1

tn
Φ
( ·
t

)
∗ f(x)

∣∣∣∣ ≤ ‖Φ‖L1(Rn)Mf(x).

Proof. Let φ be a simple function satisfying the same hypotheses. Then

φ(x) =
∑
j

ajχBrj (0)(x),

with aj > 0. Then

|φ ∗ f(x)| ≤
∑
j

ajχBrj (0) ∗ |f |(x) =
∑
j

aj |Brj (0)| 1

|Brj (0)|
χBrj (0) ∗ |f |(x) ≤ ‖φ‖L1(Rn)Mf(x),

where ‖φ‖L1(Rn) =
∑
j aj |Brj (0)|. The rescaled versions φt = 1/tnφ(·/t) are also simple functions with

the same properties and L1(Rn) norm, so the estimate holds for them as well.
An arbitrary function satisfying the hypotheses of the theorem can then be obtained as the limit of

an increasing sequence of these simple functions, and the general result therefore follows. �

Even if a function does not satisfy all the hypotheses of the previous theorem, it might nevertheless
have a majorant that does. So we still have the final corollary.

Corollary 1.11. If ψ : Rn → C is a measurable function with a nonnegative, radial, decreasing and
integrable majorant, i.e. a function Φ with those properties such that |ψ(x)| ≤ Φ(x) almost everywhere,
then

sup
t>0

∣∣∣∣ 1

tn
ψ
( ·
t

)
∗ f(x)

∣∣∣∣ ≤ ‖Φ‖L1(Rn)Mf(x),

so that the maximal operator supt |ψt ∗ f | is weak type (1, 1) and strong type (p, p), for 1 < p ≤ ∞.

And finally.
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Corollary 1.12. Let φ be a positive measurable function defined on Rn such that
�
φ = 1 and with a

radial, decreasing and integrable majorant. Then, denoting by φt(x) = 1/tnφ(x/t) its rescalings, we have,
for f ∈ Lp(Rn), 1 ≤ p <∞,

lim
t→0

φt ∗ f(x) = f(x) almost everywhere x ∈ Rn.

Proof. That φt is an approximate identity was seen in Lesson 11. Which implies that for f ∈ C∞c (Rn)
we have φt ∗ f(x)→ f(x) uniformly. As C∞c (Rn) is dense in all of the Lp(Rn), for 1 ≤ p <∞, the result
follows from the weak type estimates of the maximal operator associated to this approximate identity,
from the previous corollary. �
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